BEAM MODEL FOR THE CALCULATION OF THE MULTIPLE BOLT CONNECTIONS

By P. Agatonovic, D-85244 Röhrmoos, Germany 

Abstract: 
Different non-linear interactions in a bolted flange connection do not allow accurate  evaluation of bolt loading using current calculation methods, which are based on linear relationships. An algorithm that compensates for non-linear interactions has been developed, allowing accurate evaluation of all significant parameters of the proper MBC design The algorithm is proved based on experimentally and numerically obtained results. 

Introduction


The bolt connections occurring in the practice are mostly the connections with more than one bolt.  For such connections a non-linear model, which could guarantee the reliable design, has to be developed. The basic idea of the model is shown in Figure 1. It is assumed, that each multiple bolt connection can be decomposed in a number of single bolt connections, which are essentially constructed from plate segments or beams and a connecting element. The connection of the single model to the remaining structure is defined by the influence coefficients depending on support geometry and stiffness. 
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Figure 1 : Beam model of the bolt connection

Under eccentric external load, the reaction force shifts with increasing load from the position of the connection axis balancing at the same time the moment caused by external force.  
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Usually, during assembly of the connection, the both forces, bolt preload FV and the reaction force on the separation surface FK, act along the bolt axis (Fig. 2, a). The clamped parts are pressed together where the compliance is P.  Under the external load this effect separates (Fig. 2, b), so that the compliance is divided to the effect based on the bolt force and effect based on the force in the separation surface. 
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Fig. 2: Compliances in connection under loading

1. Determination of the Clamping force


Differential equation of the beam has the following form 
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This equation applies to the two fields of the beam, if the expression in brackets, if not greater than zero, is not taken into consideration. The integration yields: 


[image: image6.wmf](

)

2

2

K

KS1

xs

dyx

EJFFC

dx22

-

×=×-×+






(4)



[image: image7.wmf](

)

3

3

K

KS12

xs

x

EJyFFCxC

66

-

×=×-×+×+






(5)


A currently unknown rotation angle of the beam o can emerge in lieu of the clamping force



[image: image8.wmf]x0

=




[image: image9.wmf]O1

dy1

C

dxEJ

=a=×



Dissolved according to C1
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The beam can be only displaced at this position, as the elastic flexibility in the connection this allows.  Consequently
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Under the bolt (x = sK) the deflection of the beam equals the amount between initial deformation after preloading of the connection and the bolt extension by the additional force FSA : 
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Or respectively, after the introduction of the equilibrium condition: FS = FK + FA
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   ( 6)
Dissolved against FK this yields:
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The expression in the first brackets is based on the significant relationship, which determines the loading conditions in a connection: the ratio between preload and working force and the ratio of the resilience of the parts of the connection. After inserting
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the relationship (7) simplifies in:
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2. The support stiffness influence


The conditions at the connection of the model to the rest of the structure (x = sK + a) depend on the force relationships at this point and can be written in general: 
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We consider nearby the connection point, which is in equilibrium under the influence of external forces Li, where under the "force" also a moment (MA ) or pressure (p) is to be understood. Under the assumption of linear elastic behaviour, the rotation angle of the connection is determined by superposition of the rotating parts originating from the individual load components. 


The angular position of the beam (see (2)) is for x = sK + a:
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and because FS = FK + FA
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The introduction of relations (8) in this equation results in:
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The solution of this equation for MA: 
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(10)

leads, after the consideration of (1) and the simplifications in the form of influence numbers: 
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to the second relationship for the clamping force 
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that after the multiplication with EQ \f(bM;bM) 
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and simplification B = (a + bM + bF + bp. EQ \f(1;FA) ) can be written 
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(10')                                                                             
3. Solution of the system


The solution is possible if both conditions (6') and (10')) become fulfilled. After equating both relationships for clamping force:
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the slope of the beam at the place of the clamping force could be determined:
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(11)

or 
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The simplest conditions for the solution apply, if the position of the clamping force is far enough from the edge, so that the edge influences are not to be expected. It can be assumed, under these conditions, that the angle o equals zero, leading to: 
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and after rearranging according sK 
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or after introducing of 
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 as the new unknown to the characteristic equation of the connection:


C1.x3 + C2.x2 + C3.x +C4 = 0
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Here are 
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For two flanges (also of different thickness) counts


 EQ \f(1;EoJo) = \f(1;2).(\f(1;E1J1) + \f(1;E2J2)) 

S = S1 + S2

(symbolically)


P = P1 + P2

A reasonable solution to the equation above presumes that the sK distance is not approaching the edge. If the position of the clamping force to the edge is so close that the pressure distribution in the joint is not symmetric, the beam tilts on at the edge and the conditions o = 0 become increasingly inaccurate. It must be pointed out, that the so-called lever principle must not be valid for this case, because the clamping is not free and when turning around the edge, it cannot happen without the influence of the restraint of the remaining structure. Thus, concerning the multi-bolted connection is the lever principle in its primitive form, a rough simplification, which is also on the unsafe side, and therefore really should not be used. 

Nevertheless, a reasonable solution of the system is still possible. Putting in the relationship for O (11) for an effective clamping force eccentricity the value that  edge approaches (for example 
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) O may be determined.  Adopting this value in (10 ') results in FK evaluation that can be used for the determination of other forces in the connection.  


However, shifting the bolt axis position and approaching the edge has an additional effect - the reduction of the effective preloading force due to the additional embedding at the new loaded separation surfaces caused by the change in the position of the clamping force. For the present, the effective reduction of the initial preload can be approximated by the following relationship: 
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Therefore, the bolt additional force is to be calculated based on  


FZ = FK + FA - FV + FV






(15)

4.  Determination of the influence numbers “b“


The influence numbers for a series of the typical connection forms could be determined (or approximated) according to the table:
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In this way, when the form of the connection is approaching the tabular forms, the calculation of the connection or the estimation of the influence numbers necessary for the calculation simplifies. The joining stiffness may be also taken from a FE-calculation. The significance of this possibility is commonly underestimated. Compared to the usual FE -calculations with non-adapted boundary conditions (at the joining) and linear behaviour, a combined analysis delivers more and more exact information about the effect of the preloading of the connection, eccentricity of the force introduction and the separation in the joining surfaces. A non-consideration of the non-linear effects can particularly in the case of the FE-analysis leads to inaccurate results.


The demonstration of the above method is given by two typical examples given in the Annexe.
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Annexe:

An example of the calculation of the Eccentrically loaded single Bolt connection (using MATHCAD)

Input Data for calculation:

Axial loading
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Material data:              Bolts
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Geometry:
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Bolt:
[image: image54.wmf]W

13

mm

.


[image: image55.wmf]d

N

8

mm

.


[image: image56.wmf]i

1

2

..



[image: image57.wmf]L

i

5

mm

.

13

mm

.




[image: image58.wmf]D

i

8.5

mm

.

8

mm

.


[image: image59.wmf]H

K

6

mm

.


[image: image60.wmf]P

1

mm

.


[image: image61.wmf]L

K

16

mm

.


[image: image62.wmf]A

S

40.5

mm

2

.


[image: image63.wmf]a

40

mm

.


Calculation of stiffness:
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For the calculation the connection loading is scaled by the factor  [image: image78.wmf]K
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Reduction of preload force
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Using the plate thickness
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the equation of the connection can be defined 
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and solved using MATHCAD procedure


[image: image91.wmf]x

1



[image: image92.wmf]t

K

(

)

wurzel

C

1

x

3

.

C

2

K

(

)

x

2

.

C

3

K

(

)

x

.

C

4

K

(

)

x

,



[image: image93.wmf]S

s

K

(

)

t

K

(

)

a

.


  
with the edge correction
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Based on the relationship
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The forces in the connection can be determined
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Or using so called "lever principle":
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The results are shown in the following diagram:
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The comparison of the above calculation with FEM Results confirms the achieved results:
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The calculation of the complex MBC using MATHCAD

Numerous experimental investigations have shown recently, that the eccentrically loaded bolt connections are essentially higher stressed in comparison to the centrically loaded. These stresses, due to the non-linear relationships, cannot be determined using traditional calculation methods for centrically loaded bolt connections.   

Using the developed method with the help of MATHCAD, one can come to a simple and very flexible solution.  

Input data for the calculation 

[image: image1.jpg]


All data for the calculation are summarized according to the Fig. 1.




Fig. 1: Flange parameters

Bolt:

Nom. Diameter
[image: image103.wmf]d

N

10

mm

.


Number of screws
[image: image104.wmf]Z

72


Bolt shaft
[image: image105.wmf]i

1

3

..



[image: image106.wmf]L

i

3.5

mm

.

12.5

mm

.

4

mm

.


[image: image107.wmf]D

i

10

mm

.

8

mm

.

7.181

mm

.


Thread pitch: 
Thread section 
Head diameter 
Head height
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Preload force
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Flange height
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Shell diameter
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Bolt position diameter
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Edge distance of the bolts
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Main Connection data:

Clamping length
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Bolt eccentricity
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Material data:



           Bolt 

      
Flange
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Max. loading:

Axial force
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Complaisance of the components:
The total complaisance of the bolt is determined through the addition of the complaisance of its individual elements. The complaisance of the screwed thread part 
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and of the bolt head
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increase particularly the complaisance of short screws and should be considered. Accordingly, it follows for the complaisance of the screw under installation conditions (cold):
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For the calculation of the complaisance of the clamped parts the solution according to I. A. Birger with an assumed cone can be used (Keg = tan ) 
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Under the influence the working loading a part of the flange facing the screw is pressed against the screw and its loading arises, whereas the parts near to the separation surface are relieved. In the first approach we assume, that the complaisance of the clamped parts is distributed according to the.
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so that follows
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Entire complaisance of the connection equals the sum of all complaisance:
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Attention: All values relate to the complete connection, i.e. two beams of equal thickness presses to each other. For further calculation it is necessary to divide the values with 2.
Preload of the connection
The installation preload of one connection is exposed to the different negative influences.  

Due to the scatter of the values between individual screws the nominal preloading force should be valued at the level of the minimum expected preload force value.
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Furthermore, under the operational conditions additional displacements appear due to the 
Shear displacements (rotation, tension)
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so that the remaining working preload force only  
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is.

Clamping complaisance of the connection segment
The twisting of the segment at the fixation of the connection with the remaining  structure (in this case a shell) is proportional to the section loading, clamping moment and the working force, i.e.:



= M*MB + F.FB 

It follows for the shell and flange geometry 
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whereby for two equal flanges
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From it, the factors necessary for the calculation of the complaisance of the clamping emerge
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Connection forces 
Assuming a linear load distribution the load conditions for the maximally loaded segments can be determined 
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This force is calculated using 100 steps: 
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Influence of the bolt preload is considered through the factor  [image: image161.wmf]f
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It follows for so called preload factor:
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For the calculation of the clamping force eccentricity in the dependence on the working load the characteristic equation of the connection with the constants
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has to be solved (Mathcad procedure): [image: image168.wmf]x
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It follows for
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or after correction for edge (flange overhang) effect
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Fig.2: Clamping force eccentricity

On the basis of this solution for the bending complaisance of the segment beam of the connection we become:
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The forces in the connection could be calculated based on the equilibrium relationships (with and without edge correction)

Clamping force
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Bolt force
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Additional bolt force
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If the position of the clamping force to the edge is so close that the pressure distribution in the joint is not symmetric, the beam tilts on at the edge and the conditions o = 0 become increasingly inaccurate. However, the so-called lever principle must not be valid for this case, because the clamping is not free and when turning around the edge, it cannot happen without the influence of the restraint of the remaining structure. In this case we have first to calculate the angle o:
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Based on this calculation

Clamping force 
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Bolt force
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Additional bolt force
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The results comparison is shown in Fig. 3 and 4. 
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Fig. 3: Additional bolt force in the dependence on the segment loading
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Fig. 4: Clamping force calculation

Knowing the forces the stress condition in the screw can also be calculated. The bending stresses of the screw could be determined with the help of 
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For bending diameter of the bolt:
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so that the total stresses are (Fig. 5):  
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Fig. 6: Stresses in the bolt

Stresses at full load
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Stresses in the flange
Two cross-sections at the flange become critical:


[image: image201.wmf]s

T1

K

(

)

Z

D

F

K

(

)

2

p

.

R

.

H

sh

.

.

6

Z

.

F

KR

K

(

)

.

S

ef

K

(

)

.

6

Z

.

a

.

D

F

K

(

)

.

2

p

.

R

.

H

sh

2

.



[image: image202.wmf]s

T2

K

(

)

Z

D

F

K

(

)

2

p

.

R

.

H

sh

.

.

6

Z

.

F

KR

K

(

)

.

S

ef

K

(

)

.

6

Z

.

a

.

D

F

K

(

)

.

2

p

.

R

.

H

sh

2

.


at the clamping to the remain structure
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at the bolt holes
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Fig. 7: Flange stresses

As can be seen, the tensile stresses at the flange transition are prevailing bending stresses. However, an essentially higher stress concentration is expected in the bolt.

After arrangement of these basic subroutines, through the variation of parameters, sensitivity analysis of the different influences can be easily performed.  
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